Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

An NADH-dependent bacterial thioredoxin reductase-like protein in conjunction with a glutaredoxin homologue form a unique peroxiredoxin (AhpC) reducing system in Clostridium pasteurianum.

Identifieur interne : 001003 ( Main/Exploration ); précédent : 001002; suivant : 001004

An NADH-dependent bacterial thioredoxin reductase-like protein in conjunction with a glutaredoxin homologue form a unique peroxiredoxin (AhpC) reducing system in Clostridium pasteurianum.

Auteurs : C Michael Reynolds [États-Unis] ; Jacques Meyer ; Leslie B. Poole

Source :

RBID : pubmed:11827546

Descripteurs français

English descriptors

Abstract

Many eubacterial genomes including those of Salmonella typhimurium, Streptococcus mutans, and Thermus aquaticus encode a dedicated flavoprotein reductase (AhpF, Nox1, or PrxR) just downstream of the structural gene for their peroxiredoxin (Prx, AhpC) homologue to reduce the latter protein during turnover. In contrast, the obligate anaerobe Clostridium pasteurianum codes for a two-component reducing system upstream of the ahpC homologue. These three structural genes, herein designated cp34, cp9, and cp20, were previously identified upstream of the rubredoxin gene in C. pasteurianum, but were not linked to expression of the latter gene [Mathieu, I., and Meyer, J. (1993) FEMS Microbiol. Lett. 112, 223-227]. cp34, cp9, and cp20 have been expressed in Escherichia coli, and their products have been purified and characterized. Cp34 and Cp9 together catalyze the NADH-dependent reduction of Cp20 to effect the reduction of various hydroperoxide substrates. Cp34, containing noncovalently bound FAD and a redox-active disulfide center, is an unusual member of the low-M(r) thioredoxin reductase (TrxR) family. Like Escherichia coli TrxR, Cp34 lacks the 200-residue N-terminal AhpC-reducing domain present in S. typhimurium AhpF. Although Cp34 is more similar to TrxR than to AhpF in sequence comparisons of the nucleotide-binding domains, experiments demonstrated that NADH was the preferred reductant (Km = 2.65 microM). Cp9 (a distant relative of bacterial glutaredoxins) is a direct electron acceptor for Cp34, possesses a redox-active CXXC active site, and mediates the transfer of electrons from Cp34 to several disulfide-containing substrates including 5,5'-dithiobis(2-nitrobenzoic acid), insulin, and Cp20. These three proteins are proposed to play a vital role in the defense of C. pasteurianum against oxidative damage and may help compensate for the putative lack of catalase activity in this organism.

DOI: 10.1021/bi011802p
PubMed: 11827546


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">An NADH-dependent bacterial thioredoxin reductase-like protein in conjunction with a glutaredoxin homologue form a unique peroxiredoxin (AhpC) reducing system in Clostridium pasteurianum.</title>
<author>
<name sortKey="Reynolds, C Michael" sort="Reynolds, C Michael" uniqKey="Reynolds C" first="C Michael" last="Reynolds">C Michael Reynolds</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157</wicri:regionArea>
<wicri:noRegion>North Carolina 27157</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Meyer, Jacques" sort="Meyer, Jacques" uniqKey="Meyer J" first="Jacques" last="Meyer">Jacques Meyer</name>
</author>
<author>
<name sortKey="Poole, Leslie B" sort="Poole, Leslie B" uniqKey="Poole L" first="Leslie B" last="Poole">Leslie B. Poole</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2002">2002</date>
<idno type="RBID">pubmed:11827546</idno>
<idno type="pmid">11827546</idno>
<idno type="doi">10.1021/bi011802p</idno>
<idno type="wicri:Area/Main/Corpus">001003</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001003</idno>
<idno type="wicri:Area/Main/Curation">001003</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001003</idno>
<idno type="wicri:Area/Main/Exploration">001003</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">An NADH-dependent bacterial thioredoxin reductase-like protein in conjunction with a glutaredoxin homologue form a unique peroxiredoxin (AhpC) reducing system in Clostridium pasteurianum.</title>
<author>
<name sortKey="Reynolds, C Michael" sort="Reynolds, C Michael" uniqKey="Reynolds C" first="C Michael" last="Reynolds">C Michael Reynolds</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157</wicri:regionArea>
<wicri:noRegion>North Carolina 27157</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Meyer, Jacques" sort="Meyer, Jacques" uniqKey="Meyer J" first="Jacques" last="Meyer">Jacques Meyer</name>
</author>
<author>
<name sortKey="Poole, Leslie B" sort="Poole, Leslie B" uniqKey="Poole L" first="Leslie B" last="Poole">Leslie B. Poole</name>
</author>
</analytic>
<series>
<title level="j">Biochemistry</title>
<idno type="ISSN">0006-2960</idno>
<imprint>
<date when="2002" type="published">2002</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence (MeSH)</term>
<term>Base Sequence (MeSH)</term>
<term>Clostridium (enzymology)</term>
<term>Clostridium (genetics)</term>
<term>DNA, Bacterial (genetics)</term>
<term>Escherichia coli Proteins (MeSH)</term>
<term>Genes, Bacterial (MeSH)</term>
<term>Glutaredoxins (MeSH)</term>
<term>Kinetics (MeSH)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Molecular Weight (MeSH)</term>
<term>NAD (metabolism)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Oxidoreductases (MeSH)</term>
<term>Peroxidases (chemistry)</term>
<term>Peroxidases (genetics)</term>
<term>Peroxidases (metabolism)</term>
<term>Peroxiredoxins (MeSH)</term>
<term>Proteins (chemistry)</term>
<term>Proteins (genetics)</term>
<term>Proteins (metabolism)</term>
<term>Recombinant Proteins (chemistry)</term>
<term>Recombinant Proteins (genetics)</term>
<term>Recombinant Proteins (metabolism)</term>
<term>Sequence Homology, Amino Acid (MeSH)</term>
<term>Substrate Specificity (MeSH)</term>
<term>Thioredoxin-Disulfide Reductase (chemistry)</term>
<term>Thioredoxin-Disulfide Reductase (genetics)</term>
<term>Thioredoxin-Disulfide Reductase (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ADN bactérien (génétique)</term>
<term>Cinétique (MeSH)</term>
<term>Clostridium (enzymologie)</term>
<term>Clostridium (génétique)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Glutarédoxines (MeSH)</term>
<term>Gènes bactériens (MeSH)</term>
<term>Masse moléculaire (MeSH)</term>
<term>NAD (métabolisme)</term>
<term>Oxidoreductases (MeSH)</term>
<term>Oxydoréduction (MeSH)</term>
<term>Peroxidases (composition chimique)</term>
<term>Peroxidases (génétique)</term>
<term>Peroxidases (métabolisme)</term>
<term>Peroxirédoxines (MeSH)</term>
<term>Protéines (composition chimique)</term>
<term>Protéines (génétique)</term>
<term>Protéines (métabolisme)</term>
<term>Protéines Escherichia coli (MeSH)</term>
<term>Protéines recombinantes (composition chimique)</term>
<term>Protéines recombinantes (génétique)</term>
<term>Protéines recombinantes (métabolisme)</term>
<term>Similitude de séquences d'acides aminés (MeSH)</term>
<term>Spécificité du substrat (MeSH)</term>
<term>Séquence d'acides aminés (MeSH)</term>
<term>Séquence nucléotidique (MeSH)</term>
<term>Thioredoxin-disulfide reductase (composition chimique)</term>
<term>Thioredoxin-disulfide reductase (génétique)</term>
<term>Thioredoxin-disulfide reductase (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Peroxidases</term>
<term>Proteins</term>
<term>Recombinant Proteins</term>
<term>Thioredoxin-Disulfide Reductase</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>DNA, Bacterial</term>
<term>Peroxidases</term>
<term>Proteins</term>
<term>Recombinant Proteins</term>
<term>Thioredoxin-Disulfide Reductase</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Peroxidases</term>
<term>Protéines</term>
<term>Protéines recombinantes</term>
<term>Thioredoxin-disulfide reductase</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Clostridium</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Clostridium</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Clostridium</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ADN bactérien</term>
<term>Clostridium</term>
<term>Peroxidases</term>
<term>Protéines</term>
<term>Protéines recombinantes</term>
<term>Thioredoxin-disulfide reductase</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>NAD</term>
<term>Peroxidases</term>
<term>Proteins</term>
<term>Recombinant Proteins</term>
<term>Thioredoxin-Disulfide Reductase</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>NAD</term>
<term>Peroxidases</term>
<term>Protéines</term>
<term>Protéines recombinantes</term>
<term>Thioredoxin-disulfide reductase</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Base Sequence</term>
<term>Escherichia coli Proteins</term>
<term>Genes, Bacterial</term>
<term>Glutaredoxins</term>
<term>Kinetics</term>
<term>Molecular Sequence Data</term>
<term>Molecular Weight</term>
<term>Oxidation-Reduction</term>
<term>Oxidoreductases</term>
<term>Peroxiredoxins</term>
<term>Sequence Homology, Amino Acid</term>
<term>Substrate Specificity</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Cinétique</term>
<term>Données de séquences moléculaires</term>
<term>Glutarédoxines</term>
<term>Gènes bactériens</term>
<term>Masse moléculaire</term>
<term>Oxidoreductases</term>
<term>Oxydoréduction</term>
<term>Peroxirédoxines</term>
<term>Protéines Escherichia coli</term>
<term>Similitude de séquences d'acides aminés</term>
<term>Spécificité du substrat</term>
<term>Séquence d'acides aminés</term>
<term>Séquence nucléotidique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Many eubacterial genomes including those of Salmonella typhimurium, Streptococcus mutans, and Thermus aquaticus encode a dedicated flavoprotein reductase (AhpF, Nox1, or PrxR) just downstream of the structural gene for their peroxiredoxin (Prx, AhpC) homologue to reduce the latter protein during turnover. In contrast, the obligate anaerobe Clostridium pasteurianum codes for a two-component reducing system upstream of the ahpC homologue. These three structural genes, herein designated cp34, cp9, and cp20, were previously identified upstream of the rubredoxin gene in C. pasteurianum, but were not linked to expression of the latter gene [Mathieu, I., and Meyer, J. (1993) FEMS Microbiol. Lett. 112, 223-227]. cp34, cp9, and cp20 have been expressed in Escherichia coli, and their products have been purified and characterized. Cp34 and Cp9 together catalyze the NADH-dependent reduction of Cp20 to effect the reduction of various hydroperoxide substrates. Cp34, containing noncovalently bound FAD and a redox-active disulfide center, is an unusual member of the low-M(r) thioredoxin reductase (TrxR) family. Like Escherichia coli TrxR, Cp34 lacks the 200-residue N-terminal AhpC-reducing domain present in S. typhimurium AhpF. Although Cp34 is more similar to TrxR than to AhpF in sequence comparisons of the nucleotide-binding domains, experiments demonstrated that NADH was the preferred reductant (Km = 2.65 microM). Cp9 (a distant relative of bacterial glutaredoxins) is a direct electron acceptor for Cp34, possesses a redox-active CXXC active site, and mediates the transfer of electrons from Cp34 to several disulfide-containing substrates including 5,5'-dithiobis(2-nitrobenzoic acid), insulin, and Cp20. These three proteins are proposed to play a vital role in the defense of C. pasteurianum against oxidative damage and may help compensate for the putative lack of catalase activity in this organism.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">11827546</PMID>
<DateCompleted>
<Year>2002</Year>
<Month>03</Month>
<Day>28</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>06</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0006-2960</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>41</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2002</Year>
<Month>Feb</Month>
<Day>12</Day>
</PubDate>
</JournalIssue>
<Title>Biochemistry</Title>
<ISOAbbreviation>Biochemistry</ISOAbbreviation>
</Journal>
<ArticleTitle>An NADH-dependent bacterial thioredoxin reductase-like protein in conjunction with a glutaredoxin homologue form a unique peroxiredoxin (AhpC) reducing system in Clostridium pasteurianum.</ArticleTitle>
<Pagination>
<MedlinePgn>1990-2001</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Many eubacterial genomes including those of Salmonella typhimurium, Streptococcus mutans, and Thermus aquaticus encode a dedicated flavoprotein reductase (AhpF, Nox1, or PrxR) just downstream of the structural gene for their peroxiredoxin (Prx, AhpC) homologue to reduce the latter protein during turnover. In contrast, the obligate anaerobe Clostridium pasteurianum codes for a two-component reducing system upstream of the ahpC homologue. These three structural genes, herein designated cp34, cp9, and cp20, were previously identified upstream of the rubredoxin gene in C. pasteurianum, but were not linked to expression of the latter gene [Mathieu, I., and Meyer, J. (1993) FEMS Microbiol. Lett. 112, 223-227]. cp34, cp9, and cp20 have been expressed in Escherichia coli, and their products have been purified and characterized. Cp34 and Cp9 together catalyze the NADH-dependent reduction of Cp20 to effect the reduction of various hydroperoxide substrates. Cp34, containing noncovalently bound FAD and a redox-active disulfide center, is an unusual member of the low-M(r) thioredoxin reductase (TrxR) family. Like Escherichia coli TrxR, Cp34 lacks the 200-residue N-terminal AhpC-reducing domain present in S. typhimurium AhpF. Although Cp34 is more similar to TrxR than to AhpF in sequence comparisons of the nucleotide-binding domains, experiments demonstrated that NADH was the preferred reductant (Km = 2.65 microM). Cp9 (a distant relative of bacterial glutaredoxins) is a direct electron acceptor for Cp34, possesses a redox-active CXXC active site, and mediates the transfer of electrons from Cp34 to several disulfide-containing substrates including 5,5'-dithiobis(2-nitrobenzoic acid), insulin, and Cp20. These three proteins are proposed to play a vital role in the defense of C. pasteurianum against oxidative damage and may help compensate for the putative lack of catalase activity in this organism.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Reynolds</LastName>
<ForeName>C Michael</ForeName>
<Initials>CM</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Meyer</LastName>
<ForeName>Jacques</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Poole</LastName>
<ForeName>Leslie B</ForeName>
<Initials>LB</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 GM050389</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 GM-50389</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Biochemistry</MedlineTA>
<NlmUniqueID>0370623</NlmUniqueID>
<ISSNLinking>0006-2960</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004269">DNA, Bacterial</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029968">Escherichia coli Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054477">Glutaredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011506">Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011994">Recombinant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0U46U6E8UK</RegistryNumber>
<NameOfSubstance UI="D009243">NAD</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.-</RegistryNumber>
<NameOfSubstance UI="D010088">Oxidoreductases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.11.1.-</RegistryNumber>
<NameOfSubstance UI="D010544">Peroxidases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.11.1.15</RegistryNumber>
<NameOfSubstance UI="D054464">Peroxiredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.11.1.15</RegistryNumber>
<NameOfSubstance UI="C515937">ahpC protein, E coli</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.6.4.-</RegistryNumber>
<NameOfSubstance UI="C515938">ahpF protein, E coli</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.8.1.9</RegistryNumber>
<NameOfSubstance UI="D013880">Thioredoxin-Disulfide Reductase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001483" MajorTopicYN="N">Base Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003013" MajorTopicYN="N">Clostridium</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004269" MajorTopicYN="N">DNA, Bacterial</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029968" MajorTopicYN="N">Escherichia coli Proteins</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005798" MajorTopicYN="N">Genes, Bacterial</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054477" MajorTopicYN="N">Glutaredoxins</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007700" MajorTopicYN="N">Kinetics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008970" MajorTopicYN="N">Molecular Weight</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009243" MajorTopicYN="N">NAD</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010088" MajorTopicYN="Y">Oxidoreductases</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010544" MajorTopicYN="N">Peroxidases</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054464" MajorTopicYN="N">Peroxiredoxins</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011506" MajorTopicYN="N">Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011994" MajorTopicYN="N">Recombinant Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017386" MajorTopicYN="N">Sequence Homology, Amino Acid</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013379" MajorTopicYN="N">Substrate Specificity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013880" MajorTopicYN="N">Thioredoxin-Disulfide Reductase</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2002</Year>
<Month>2</Month>
<Day>6</Day>
<Hour>10</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2002</Year>
<Month>3</Month>
<Day>29</Day>
<Hour>10</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2002</Year>
<Month>2</Month>
<Day>6</Day>
<Hour>10</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">11827546</ArticleId>
<ArticleId IdType="pii">bi011802p</ArticleId>
<ArticleId IdType="doi">10.1021/bi011802p</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Meyer, Jacques" sort="Meyer, Jacques" uniqKey="Meyer J" first="Jacques" last="Meyer">Jacques Meyer</name>
<name sortKey="Poole, Leslie B" sort="Poole, Leslie B" uniqKey="Poole L" first="Leslie B" last="Poole">Leslie B. Poole</name>
</noCountry>
<country name="États-Unis">
<noRegion>
<name sortKey="Reynolds, C Michael" sort="Reynolds, C Michael" uniqKey="Reynolds C" first="C Michael" last="Reynolds">C Michael Reynolds</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001003 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001003 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:11827546
   |texte=   An NADH-dependent bacterial thioredoxin reductase-like protein in conjunction with a glutaredoxin homologue form a unique peroxiredoxin (AhpC) reducing system in Clostridium pasteurianum.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:11827546" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020